A wind tunnel study of gaseous tracer dispersion in the convective boundary layer capped by a temperature inversion
نویسنده
چکیده
Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented. r 2002 Elsevier Science Ltd. All rights reserved.
منابع مشابه
7.2 Dispersion in Atmospheric Convective Boundary Layer with Wind Shears: from Laboratory Models to Complex Simulation Studies
Convective boundary layers (CBLs) driven by buoyancy forcings from the bottom or/and from the top and capped by temperature (density) inversions are commonly observed in the lower portion of earth’s atmosphere (Holtslag and Duynkerke 1998). During fairweather daytime conditions, the buoyancy forcing in the boundary layer is primarily represented by convective heat transfer from a warm underlyin...
متن کاملDispersion of passive tracer in the atmospheric convective boundary layer with wind shears: a review of laboratory and numerical model studies
Paper reviews recent laboratory and numerical model studies of passive gaseous tracer dispersion in the atmospheric convective boundary layer (CBL) with surface and elevated wind shears. Atmospheric measurement data used for validation of these two model techniques are briefly discussed as well. A historical overview is given of laboratory studies of dispersion in the atmospheric CBL. Model stu...
متن کاملبررسی آلودگی هوای شهر تهران به روش وارونگی بحرانی هافتر
In issues related to air pollution, the thickness of the boundary layer is known as the depth of the mixed layer because the pollution on the ground surface is mixed in this entire layer through turbulence processes. In most cases, the boundary of the area is clearly visible on big industrial cities. The depth of the mixed layer has an important effect in the concentration of air pollution whic...
متن کاملWind Tunnel Model Study of Turbulence Regime in The
Results from a wind tunnel model of the sheared atmospheric convective boundary layer (CBL) are presented and discussed. The model is realized in the thermally stratified wind tunnel of the Institute of Hydrology and Water Resources Planning (IHW), University of Karlsruhe. Design of the wind tunnel, and the technique employed for velocity and temperature measurements are described. The performe...
متن کاملUNSTEADY CONVECTIVE DIFFUSION IN A HERSCHEL–BULKLEY FLUID IN A CONDUIT WITH INTERPHASE MASS TRANSFER
The combined effect of non-Newtonian rheology and irreversible boundary reaction on dispersion in a Herschel-Bulkley fluid through a conduit (pipe/channel) is studied by using generalized dispersion model. The study explains the development of dispersive transport following the injection of a tracer in terms of three effective transport coefficients namely exchange, convective and dispersion co...
متن کامل